Общество с ограниченной ответственностью «ВИЛО РУС»

V 1221710
Генеральный директор
ООО «ВИЛО РУС»
Й.О. Даллендоерфер
«»2016 г.

УТВЕРЖЛАЮ

Система управления насосными станциями типов WILO-AMP, WILO-ASN

Технические условия ТУ 26.51.70-023-45876126-2016

СОГЛАСОВАНО

Директор по производству
_____П.В. Филиппенков
«___»____2016 г.

Без ограничения срока действия

Ногинск 2016

1º подл. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Настоящие технические условия распространяются на системы WILO-AMP. WILO-ASN (далее управления ПО тексту «система») предназначенные ДЛЯ управления насосами насосными водоснабжения, отопления и водоотведения в ручном и/или автоматическом режиме. Система предназначена для использования в различных отраслях промышленности.

Система позволяет выполнять следующие технологические функции:

- поддержание давления, температуры, расхода, уровня или их перепада изменением частоты вращения насоса преобразователем частоты и/или каскадного подключения/отключения насосов с использованием входного и выходного датчиков или сигнализаторов предельных значений.
- поддержание уровня в резервуаре при помощи каскадного подключения/отключения насосов и/или преобразователя частоты, с использованием аналогового датчика уровня или сигнализаторов предельных значений
- управление скважинным насосом, автоматизация процесса подъёма воды из артезианских скважин или водоприёмных колодцев и подача ее с заданным давлением в жилые дома, на предприятия или в резервуар чистой воды.

Климатическое исполнение системы по устойчивости к воздействию температуры и влажности окружающего воздуха - УХЛ 4 по ГОСТ 15150-69.

Условия эксплуатации системы:

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

№ подл.

- предельная рабочая температура окружающего воздуха от плюс 1°C до плюс 40 °C;
 - относительная влажность не более 60% (при плюс 20°С);
 - атмосферное давление от 650 до 850 мм.рт.ст.

Структура условного обозначения системы управления:

WILO-AMP —	1	1	1		2	_	3	3	
------------	---	---	---	--	---	---	---	---	--

№	Обозначение
1	Мощность насоса
2	Количество насосов
3	Конфигурация силовой части: DD - прямой пуск SD - пуск «звезда-треугольник» SS - плавный пуск FF - регулирование частоты
	ZZ – смешанный пуск

Изм. Лист № докум. Подп. Дата

ТУ 26.51.70-023-45876126-2016

Система управления WILO-AMP предназначенная для управления насосными станциями с тремя насосами, мощностью 110 кВт каждый. Пуск и электродвигателем осуществляется управление насоса помошью преобразователя частоты. WILO-ASN-A-BB-CCC-DDDDEF-GGGGG-HIJJKK-LMNOP-QR-SS **WILO-ASN** – тип станций управления насосами; А – назначение станции управления насосами: 1 — первый подъём; 2 – второй подъём; 3 — третий подъём; К – канализационная. ВВ – общее количество насосов и одновременно в работе: 11 - 1 рабочий насос (только для WILO-ASN-1); 21 - 1 рабочий + 1 резервный насос; 22 - 2 рабочих насоса одновременно (только для WILO-ASN-К); 31 - 1 рабочий насос + 2 резервных насоса (рекомендуется для WILO-ASN-K); 32 - 2 рабочих насоса + 1 резервный насос; 33 – 3 рабочих насоса одновременно (только для WILO-ASN-K); 41 - 1 рабочий насос + 3 резервных насоса (рекомендуется для WILO-ASN-K); 42 - 2 рабочих насоса + 2 резервных насоса (рекомендуется для WILO-ASN-K); 43 - 3 рабочих насоса + 1 резервный насос; 44 – 4 рабочих насоса одновременно (только для WILO-ASN-K); 52 - 2 рабочих насоса + 3 резервных насоса (только для WILO-ASN-K); 53 - 3 рабочих насоса + 2 резервных насоса; 54 - 4 рабочих насоса + 1 резервный насос; 55 – 5 рабочих насосов одновременно (только для WILO-ASN-K). ССС – мощность электродвигателя насоса, кВт (значения: от 1,5 до 110); **DDDD** – ток электродвигателя насоса, А (значения: от 37 до 2160); E – схема запуска: 0 – от сети (только для WILO-ASN-1 и WILO-ASN-К до 5,5 кВт); $1 - \text{сеть} + \Pi \text{Ч};$ 2 - сеть + УПП (только для WILO-ASN-1 и WILO-ASN-K); $3 - ceть + \Pi \Psi + У\Pi\Pi;$ $4 - \Pi \Psi + \Pi \Pi$; $5 - \Pi Y$; 6 - УПП (только для WILO-ASN-1 и WILO-ASN-К). F – количество ПЧ и УПП:

ТУ 26.51.70-023-45876126-2016

Лист

записи системы в сопроводительной и конструкторской

WILO-AMP-110-3-FF

Пример

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм. Лист

№ докум.

Подп.

Дата

документации и при заказе:

```
\Gamma – ПЧ на каждый насос (для E=[1, 3...5]);
\Pi - \Pi на каждый насос (для E=[2...4, 6]);
E – один ПЧ и одно УПП;
\mathbb{X} - \Pi \mathbb{Y} и УПП на каждый насос (для E=[3...4]);
M-1 ПЧ и 2 УПП;
K-2 ПЧ и 1 УПП;
\Pi - 1 ПЧ и 3 УПП;
M-2 ПЧ и 2 УПП;
H-3 ПЧ и 1 УПП;
\Pi - 1 ПЧ и 4 УПП;
P-2 ПЧ и 3 УПП;
C-3 ПЧ и 2 УПП;
T - 4 \Pi \Psi и 1 У \Pi \Pi.
GGGGG – защиты:
1-я позиция – внутренняя защита обмоток:
Н – нет защиты;
T – термистор;
\mathbf{F} – биметалл;
A – датчик РТ100.
2-я позиция – защита камеры уплотнений (для WILO-ASN-K):
H- нет;
1 – один электрод;
2 – два электрода;
3 – три электрода.
3-я позиция – защита камеры протечек (для WILO-ASN-K):
H- нет:
\Pi – поплавок.
4-я позиция – контроль температуры подшипника:
H - нет;
A - PT100.
5-я позиция – контроль вибрации:
Н – нет:
A – аналоговый датчик (4...20 мA).
\mathbf{H} — ввод питания:
0 - снизу;
1 - cepxy.
I – подключение насосов:
0 - снизу;
1 - cepxy.
JJ – цоколь:
00 - без цоколя;
                                                                                 Лист
                                      ТУ 26.51.70-023-45876126-2016
                                                                                  5
Лист
      № докум.
                 Подп.
                       Дата
```

А – без ПЧ и УПП (для E=0); Б – один ПЧ (для E=[1, 3...5]); В – одно УПП (для E=[2...4, 6]);

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

10 – высота цоколя 100 мм; 20 – высота цоколя 200 мм;

КК – исполнение шкафа:

L – количество вводов питания:

21 - IP21;

5 - 1 ввод;

54* - IP54/IP43.

A-2 ввода с ABP;

УХ – нестандартная высота (Х – высота/100 мм).

1.1. ОБЩИЕ ТРЕБОВАНИЯ

1.1.1 Система должна соответствовать требованиям настоящих технических условий ТУ 26.51.70-023-45876126-2016

1.2. ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

- 1.2.1 Частота питающей сети переменного тока 50 Гц
- 1.2.2 Режим работы системы автоматический, ручной, дистанционный и местный.
- 1.2.3 Номинальное напряжение питания системы управления (В) от 24 до 380.
- 1.2.4 Номинальное напряжение питания силового оборудования, управляемого и/или контролируемого системой (В) от 24 до 380.
- 1.2.5 Количество фактически подключенных насосов не больше номинального количества (указывается в условном обозначении системы).
- 1.2.6 Мощность подключаемого электрооборудования не должна превышать номинальную мощность системы.
 - 1.2.7 Масса составных частей системы не более (кг) для: шкафа управления 340;

шкафа силового оборудования – 1450;

1.2.8 Габаритные размеры системы и предельные отклонения габаритных размеров не должны превышать значений, указанных в конструкторской документации.

1.3 ТРЕБОВАНИЯ НАДЕЖНОСТИ

- 1.3.1 Срок службы системы (не менее) 10 лет.
- 1.3.2 Наработка на отказ системы должна быть не менее -1000 часов.
- 1.3.3 Среднее время восстановления работоспособности системы при повреждениях (не более) 48 часов.
 - 1.3.4 Критерием предельного состояния системы следует считать:
- •разрушение и потеря защитного слоя изоляции проводов и изоляционных площадок;
 - •коррозию дверцы системы;
 - •сквозная коррозия корпуса системы.
- 1.3.5 Критерием отказа системы является невозможность дальнейшего использования при наступлении состояния, характеризующегося хотя бы одним из следующих признаков:
 - •разрушение контактных соединений клеммы заземления;
 - •растрескивание изоляции монтажных проводов системы;
 - •выход из строя силовых дроссельных узлов;
 - •выход из строя преобразователя частоты;

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв.

Подп. и дата

ТУ 26.51.70-023-45876126-2016

1.4 ТРЕБОВАНИЯ СТОЙКОСТИ К КЛИМАТИЧЕСКИМ ВОЗДЕЙСТВИЯМ

- 1.4.1 Система должна быть устойчива к воздействию предельно допустимой рабочей температуры окружающего воздуха длы WILO-AMP от 1 $^{\circ}$ C до плюс 40 $^{\circ}$ C (без конденсации влаги), для WILO-ASN от минус 25 $^{\circ}$ C до плюс 40 $^{\circ}$ C.
- 1.4.2 Система должна быть устойчива к относительной влажности не более 60% (при плюс 20°C);
- 1.4.3 Система должна быть устойчива к воздействию атмосферного давления от 650 до 850 мм.рт.ст.

1.5 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ

- 1.5.1 Поверхность шкафов должна быть окрашена.
- 1.5.2 Корпуса шкафов системы должны иметь порошковое полимерное покрытие и/или другое покрытие, которое должно соответствовать IV классу для внешних поверхностей и VI классу для внутренних поверхностей по ГОСТ 9.032-74.
 - 1.5.3 Толщина покрытия корпуса шкафа системы не менее 100 мкм.
- 1.5.4 Поверхность системы не должна иметь трещин, выбоин и других дефектов, ухудшающих внешний вид.
- 1.5.5 Двери шкафа управления, шкафа преобразователя частоты и шкафа/шкафов силовой коммутации должны открываться на угол не менее 115° и обеспечивать свободный доступ к внутренним блокам и устройствам.
 - 1.5.6 Двери системы должны закрываться на замок.
- 1.5.7 За дверью следует предусматривать защитные ограждения, закрывающие полностью или частично наиболее опасные места, для исключения случайного прикосновения к неизолированным токоведущим частям.
- 1.5.8 Съемные оболочки и внутренние ограждения системы должны сниматься только с применением инструмента.
- 1.5.9 Ограждения коммутационных вводных аппаратов рубящего типа должны исключать выброс дуги, опасный для оператора, случайное прикосновение к соседним токоведущим частям при выполнении коммутационных операций.
- 1.5.10 Съемные части оболочек и внутренние изоляционные элементы системы, на которых крепятся токоведущие части, должны изготавливаться из изоляционных материалов, обладающих стойкостью к воспламенению в соответствии с ГОСТ Р 51321.1-2007.
- 1.5.11 Механическая прочность средств крепления съемных деталей и оболочек ограждений должна соответствовать ГОСТ Р 51321.1-2007.
- 1.5.12 В отделах ввода и распределения системы должно быть предусмотрено достаточное место для размещения и присоединения

	пред	,
Изм.	Лист	

№ докум.

Подп.

Дата

проводников к аппаратам с соблюдением нормированных радиусов изгиба изолированных проводов и жил кабелей.

- 1.5.13 В отделах ввода и распределения энергии должны быть предусмотрены элементы для крепления кабелей и проводов питающих сетей и распределительных цепей.
- 1.5.14 Сечение фазных шин и изолированных проводников должны соответствовать значениям номинальных токов электродвигателей для конкретной модели системы.
- 1.5.15 Сечения сборных фазных шин должны соответствовать значениям суммарного номинального тока электродвигателей для конкретной модели системы.
- 1.5.16 Нулевые защитные и нулевые рабочие шины маркируются знаками «PE» и «N».
- 1.5.17 Зажимы для присоединения защитных PE или PEN проводников питающих сетей должны иметь маркировку знаком заземления. Размеры знака и способ выполнения определяются по ГОСТ 21130-75.
- 1.5.18 Нулевые защитные проводники выполняются из изолированного провода. Защитные проводники должны быть идентифицированы посредством двухцветной желто-зеленой комбинации.
- 1.5.19 Нулевые рабочие проводники должны выполняться из изолированного провода синего цвета. Буквенно-цифровая идентификация рабочего нулевого проводника должна быть «N».
- 1.5.20 Фазные проводники трехфазной электрической цепи должны иметь цветовую или буквенно-цифровую маркировку.
- 1.5.21 Фазные проводники и шины сечением более 10 кв. мм. должны иметь цветовую маркировку на концах проводника.
- 1.5.22 Фазные проводники и шины сечением менее 10 кв. мм. должны иметь буквенно-цифровую маркировку на концах проводника.
- 1.5.23 В системе должны быть предусмотрены контактные зажимы, которые должны обеспечивать надежное присоединение проводников внешних и внутренних цепей и иметь средства для стабилизации контактного давления согласно ГОСТ 10434-82.
- 1.5.24 В шкафу системы должно быть отделение для хранения эксплуатационных документов на внутренних сторонах двери или в других удобных местах.

1.6 ТРЕБОВАНИЯ К КОМПЛЕКТУЮЩИМ

- 1.6.1 В системе должны применяться комплектующие элементы (преобразователи частоты, устройства плавного пуска, автоматические выключатели и другие) срок службы которых составляет не менее срока службы системы.
- 1.6.2 Качество комплектующих элементов, используемых материалов должно подтверждаться соответствующими документами (сертификатами соответствия и другими документами).

Изм.	Лист	№ докум.	Подп.	Дата

1.6.3 Срок хранения используемых материалов и комплектующих элементов со дня их приемки службой входного контроля изготовителя до момента монтажа в систему должен быть не более трёх лет.

1.7 КОМПЛЕКТНОСТЬ

1.7.1 Комплект поставки системы должен соответствовать перечню, приведенному в таблице 1:

Таблица 1

Таолица 1	
Наименование	Колич
	ество (шт.)
Система управления WILO-AMP, WILO-ASN	1
Шкаф управления	1*
Шкаф силового оборудования	1*
Выносная панель управления	1*
Пульт местного управления	1*
Комплект кабелей соединения шкафа управления и	1*
шкафа преобразователя частоты и/или шкафов силовой	
коммутации (WILO-AMP-CC)	
Эксплуатационная документация	1
Комплект электрических схем	1
Упаковочный лист	1

^{* -} комплектность может изменяться в зависимости от модели системы.

1.8 МАРКИРОВКА

- 1.8.1 Система маркируется табличкой, расположенной на внутренней стороне двери каждого шкафа входящего в состав системы.
- 1.8.2 Табличка должна располагаться в правом верхнем углу двери. При невозможности размещения таблички в левом верхнем углу допускается располагать табличку в другой части двери.
- 1.8.3 На табличке системы должна быть нанесена маркировка содержащая:
 - наименование изготовителя;
 - страна производства;
 - модель системы;
 - серийный номер;
 - номинальное напряжение питания;
 - номинальная частота питания;
 - номинальная мощность подключаемых нагрузок (кВт);
 - степень защиты оболочки;
 - климатическое исполнение;
 - месяц и год изготовления.
- 1.8.4 Маркировка системы должна быть долговечной и сохраняться в течении всего срока службы системы в нормальных условиях эксплуатации.

				·
Изм.	Лист	№ докум.	Подп.	Дата

- 1.8.5 Транспортная маркировка системы выполняется по ГОСТ 14192-96 и должна содержать знаки:
 - Не катить;
 - Беречь от влаги;
 - Хрупкое. Осторожно;
 - Штабелирование запрещается;
 - Крюками не брать;
 - Транспортировать горизонтально.
- 1.8.6 Транспортная маркировка должна быть выполнена черной водостойкой краской на упаковке по трафарету.

1.9 УПАКОВКА

- 1.9.1 Система упаковывается в тару, которой является гофрированный картон или деревянные ящики по ГОСТ 24634-81.
- 1.9.2 Выступающие части системы (кнопки, переключатели, разъемы) перед упаковкой должны быть закрыты материалом, предотвращающим повреждения при транспортировке.
- 1.9.3 Для защиты от повреждений при транспортировке должны быть закрыты панели оператора и показывающие приборы.
- 1.9.4 В качестве защитного материала использовать вспененный полиэтилен, пенопласт и/или другой соответствующий материал.
- 1.9.5 Потребительская тара для предотвращения воздействия климатических факторов должна быть закрыта полиэтиленовой пленкой.
- 1.9.6 Шкафы системы транспортируются в горизонтальном и/или вертикальном положении, уложенными на транспортной таре.
- 1.9.7 Потребительская тара закрепляется на паллетах. В качестве крепежа используется полистироловая лента. Концы ленты соединяются внахлест и закрепляются металлической скобой.
- 1.9.8 В потребительскую тару вкладывается техническая документация и упаковочный лист, содержащий следующие сведения:
 - •обозначение типа (модели) системы;
 - •дату упаковки;
 - •отметка об упаковки.
- 1.9.9 Техническую документацию необходимо вложить в непроницаемый пакет из полиэтиленовой пленки по ГОСТ 10354-82, который затем заваривается.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ

2.1 ОБЩИЕ ТРЕБОВАНИЯ.

2.1.1 Шкафы системы должны соответствовать TP TC 004/2011 и требованиям безопасности по ГОСТ Р 51321.1-2007.

Изм.	Лист	№ докум.	Подп.	Дата

- Источником опасности при монтаже и эксплуатации системы является переменный электрический ток частотой 50 Гц.
- 2.1.4 По способу защиты от поражения электрическим током системы относится к электрооборудованию 01 класса по ГОСТ 12.2.007.0-75.
- На внешней стороне дверей, а также на внутренних ограждениях должен быть нанесен предупреждающий знак «Осторожно! Электрическое напряжение» по ГОСТ 12.4.026-2001.
- 2.1.6 Направления движения управления органов системы В установленном положении должны соответствовать ГОСТ 21991-89.
- Ограждения должны устанавливаться и сниматься с применением инструмента без риска соприкосновения с неизолированными токоведущими частями, находящимися под напряжением, или повреждения изоляции токоведущих частей.
- 2.1.8 Электрическое сопротивление изоляции внутренних цепей системы в холодном состоянии должно быть не менее 2 МОм.
- 2.1.9 Электрическая прочность изоляции электрических цепей системы должна выдерживать в течение 1 минуты при температуре окружающего воздуха плюс 22°C и относительной влажности до 85%, воздействие испытательного напряжения 2500 вольт частотой 50 Гц.
- 2.1.10 Переходное сопротивление заземления (между заземления и металлическими заземляемыми частями) системы не должно превышать - 0,1 Ом.
- 2.1.11 Воздушные зазоры путей И длины утечки между неизолированными токоведущими частями должны быть не менее 20 мм.
- 2.1.12 Общие требования по обеспечению пожарной безопасности системы по ГОСТ 12.1.004-91.

ЗАЩИТА ОКРУЖАЮЩЕЙ СРЕДЫ 2.2

- Система не оказывает вредных воздействий на окружающую 2.2.1 среду, не требует мер и средств защиты природной среды от вредных воздействий и контроля выброса загрязняющих веществ.
- Предусмотрено повторное 2.2.2 использование составляющих материалов:
 - элементов упаковки (бумага, полиэтилен, деревянные ящики);
 - металлических деталей корпуса системы;
 - неметаллических деталей системы;
 - медных проводников системы;
- Идентифицированные элементы системы необходимо сдать в специализированную организацию обеспечивающую повторное ИХ использование или утилизацию.

Изм.	Лист	№ докум.	Подп.	Дата	

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

3. ПРАВИЛА ПРИЕМКИ

Для проверки соответствия системы требованиям настоящих технических условий устанавливаются следующие виды испытаний:

- приемо-сдаточные;
- периодические;
- типовые испытания.
- 3.1 Испытания системы проводит предприятие-изготовитель или определяемая изготовителем организация с применением испытательного и измерительного оборудования, которое прошло метрологическую поверку или аттестацию.
- 3.2 Перечень рекомендуемых средств измерений и испытательного оборудования, применяемого при проведении испытаний, приведён в приложении В.

3.3 ПРИЕМО-СДАТОЧНЫЕ ИСПЫТАНИЯ

- 3.3.1 Приемо-сдаточные испытания проводятся изготовителем.
- 3.3.2 Приемо-сдаточным испытаниям подвергается каждая система с целью проверки безопасности и соответствия требованиям настоящих технических условий и конструкторской документации.
- 3.3.3 Система считается выдержавшей испытания, если при всех проверках и испытаниях получены положительные результаты.
- 3.3.4 Приемо-сдаточным испытаниям подвергается система в объеме в соответствии с таблицей 4.

Таблина 4

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Наименование проверки	Приемо- сдаточные	Номер пункта услов	
	испытания	Технических	Методов
		требований	испытаний
1	2	3	4
1. Проверка номинального напряжения	+	п.1.2.4	п.4.1.4
питания системы			
2. Проверка количества подключенных	+	п.1.2.5	п.4.1.5
насосов к системе			
3. Проверка режимов работы системы	+	п.1.2.2	п.4.1.6
4. Проверка внешнего вида системы	+	п.1.5.1	п.4.1.10
5. Проверка наличия и крепления	+	п.1.5.8	п.4.1.11
съемных оболочек и внутренних			
ограждений системы			
6. Проверка угла открытия дверей	+	п.1.5.5	п.4.1.12
шкафов системы			

	·			·
Изм.	Лист	№ докум.	Подп.	Дата

ТУ 26.51.70-023-45876126-2016

Изм. Лист № докум. Подп.

приемке.

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

7. Проверка наличия защитных

ограждений системы

ТУ 26.51.70-023-45876126-2016

После устранения дефектов, а также причин их вызывающих,

В эксплуатационной документации системы, прошедшей приемо-

изделие повторно должно подвергаться испытаниям в полном объеме.

Дата

сдаточные испытания, должна быть сделана соответствующая запись о

п.1.5.7

 $\pi.4.1.13$

14

3.4 ПЕРИОДИЧЕСКИЕ ИСПЫТАНИЯ

- 3.4.1 Периодические испытания проводятся на системе прошедшей приемо-сдаточные испытания.
- 3.4.2 Периодические испытания должны проводится не реже одного раза в пять лет на одной произвольно выбранной системе из последней партии, прошедшей приемо-сдаточные испытания.
- 3.4.3 Допускается периодические испытания заменять сертификационными.
 - 3.4.4 Объем периодических испытаний в соответствии с таблицей 5.

Таблица 5

Наименование проверки	Периодичес кие	_	о пункта ких условий
	испытания	Техническ	Методов
		их	испытаний
1	2	3	4
1. Проверка частоты питающей	+	п.1.2.1	п.4.1.4
сети переменного тока системы			
2. Проверка суммарной	+	п.1.2.6	п.4.1.7
мощности подключаемых			
насосов к системе			
3. Проверка габаритных	+	п.1.2.8	п.4.1.8
размеров системы			
4. Проверка надёжности	+	п.1.3	п.4.1.9
5. Проверка толщины	+	п.1.5.3	п.4.1.18
полимерного покрытия			
системы			
6. Проверка класса защиты	+	п. 2.1.4	п.4.1.23
системы от поражения			
электрическим током			
7. Проверка электрической	+	п.2.1.9	п.4.1.28
прочности изоляции			
электрических цепей системы			
8. Проверка переходного	+	п.2.1.10	п.4.1.29
сопротивления заземления			
системы			
9. Проверка путей утечки и	+	п.2.1.11	п.4.1.30
воздушных зазоров между			
неизолированными			
токоведущими частями			
системы			

Изм.	Лист	№ докум.	Подп.	Дата

Взам. инв. №

- 3.4.6 После выявления причин отказа изделие подвергают повторным испытаниям по пунктам несоответствия.
- 3.4.7 Результаты периодических испытаний системы оформляются протоколом и актом.

3.5 ТИПОВЫЕ ИСПЫТАНИЯ

- 3.5.1 Типовые испытания системы проводятся при изменениях конструкции системы или технологии изготовления, влияющих на технические характеристики.
- 3.5.2 Типовым испытаниям подвергаются системы, прошедшие приемосдаточные испытания.
- 3.5.3 Типовые испытания проводят по программе и методике, которая составляется с учетом вновь вводимых изменений конструкции системы.
- 3.5.4 Количество систем необходимых для проведения испытаний, устанавливается не менее 3 штук.
- 3.5.5 Результаты типовых испытаний системы оформляются протоколом.
- 3.5.6 По результатам испытаний принимается решение о возможности внесения изменений в техническую документацию изготовления системы.
- 3.5.7 При положительных результатах испытаний необходимые изменения вносятся в установленном порядке в настоящие технические условия.

4. МЕТОДЫ ИСПЫТАНИЙ

4.1 ОБЩИЕ ПОЛОЖЕНИЯ

- 4.1.1 Все испытания системы должны проводиться при следующих климатических условиях (если в методике испытаний нет других указаний):
 - температура окружающего воздуха от плюс 1°C до плюс 40°C;
 - относительная влажность от 60 до 85 % без конденсации влаги);
 - атмосферное давление от 650 до 850 мм.рт.ст.
- 4.1.2 Перечень оборудования для проведения испытаний и измерений системы управления насосными стациями приведен в Приложении В.
- 4.1.3 Приборы для контроля электрических параметров должны иметь класс точности не ниже 1.0% по ГОСТ 22261-94. Для контроля электрического сопротивления изоляции и электрической прочности изоляции допускается применять электроизмерительные приборы класса точности 4.0 % по ГОСТ 22261-94.

Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

ТУ 26.51.70-023-45876126-2016

- 4.1.4 Проверка номинального напряжения питания системы (п.1.2.4), номинального напряжения питания силового оборудования системы, номинального тока проводится рассмотрением соответствующих сопроводительных документов на комплектующие системы и характеристики питающей сети (паспорта, сертификаты соответствия) подтверждающих соответствующие показатели.
- 4.1.5 Проверка количества подключенных насосов (п.1.2.5) проводится визуально, сверяя фактическое число электродвигателей с количеством электродвигателей указанным для подключения к данной модели системы.
- 4.1.6 Проверка режимов работы системы (п.1.2.2) проводится на имитационном стенде, задавая последовательно режимы работы системы в соответствии с «Инструкцией по эксплуатации».
- 4.1.7 Проверка суммарной мощности потребляемой подключаемыми электродвигателями, питаемыми от 3-х фазной сети переменного тока (п.1.2.6) проводят измерением мощности, потребляемой всеми подключёнными электроприводами с помощью токовых клещей имитационного стенда по основным силовым цепям двигателя.
- 4.1.8 Проверка габаритных размеров (п.1.2.8) проводят рулеткой металлической. Результаты проверки считают удовлетворительными, если измеренные параметры соответствуют конструкторской документации.
- 4.1.9 Проверка надежности (срока службы) системы (п.1.3) проводится до списания системы путем обработки данных, полученных в условиях подконтрольной эксплуатации.
- 4.1.10 Проверка внешнего вида системы (п.1.5.1) проводится визуально (осмотром без применения увеличительных приборов) на соответствие конструкторской документации с расстояния 20-30 см.
- 4.1.11 Проверка снятия съемных оболочек и внутренние ограждения (п.1.5.8) следует проводить сверкой с чертежами, техническими условиями и контрольным образцом, а также пробным демонтажем оболочек.
- 4.1.12 Проверка угла открытия дверей (п.1.5.5), возможности закрытия дверей встроенным замком (п.1.5.6) проводят пятикратным закрыванием и открыванием дверей на внутренний замок и последующим замером транспортиром угла открывания дверей.
- 4.1.13 Проверка наличия защитных ограждений токоведущих частей (п.1.5.7) проводят визуально, сличая фактическое наличие ограждения с расположением на чертеже.
- 4.1.14 Проверка снятия внутренних ограждений (п.1.5.9) и механической прочности крепления съемных деталей оболочек (п.1.5.10) следует проводить сверкой с чертежами и техническими условиями, а также пробным монтажом цепей.
- 4.1.15 Проверка сечения фазных шин (п.1.5.14), сечения сборных шин (п.1.5.15), нулевой защитной РЕ и нулевой рабочей N следует проводить мерительным инструментом с последующей сверкой с чертежами для конкретной модели системы.

	·			
Изм.	Лист	№ докум.	Подп.	Дата

- 4.1.16 Проверка маркировки нулевых защитных и нулевых рабочих шин (п.1.5.16) и маркировки зажима заземления (п.1.5.18) проводится визуально.
- 4.1.17 Проверка наличия контактных зажимов для стабилизации контактного давления (п.1.5.23) проводится визуально, сверяя с конструкторской документацией.
- 4.1.18 Проверка наличия защитного порошкового покрытия и толщины порошкового покрытия корпуса (п.1.5.3) проводится на участках корпуса системы, к которым возможен свободный доступ измерительным толщиномером. Результаты испытаний считают положительными, если толщина покрытия не менее 100 мкм.
- 4.1.19 Проверка комплектующих (п.1.6) проводится сравнением комплектности системы с спецификацией оборудования или с учетом договоров на поставку.
- 4.1.20 Проверка комплектности поставки системы (п.1.7) проводится сравнением комплектности системы в соответствии с конструкторской документации.
- 4.1.21 Проверка маркировки системы (п.1.8) проводится внешним осмотром невооруженным глазом с нормальной остротой зрения при нормальной освещенности.
- 4.1.22 Проверка упаковки системы (п.1.9) проводится визуально. При этом проверяется соответствие упаковки требованиям документации на упаковку, манипуляционных знаков и сопроводительных документов.
- 4.1.23 Проверка класса защиты от поражения электрическим током (п.2.1.3) проводится по ГОСТ 12.2.007.0-75.
- 4.1.24 Проверка наличия предупреждающих знаков (п.2.1.4) проводят визуально, сличая вид и наличие знака с местом указанными в конструкторской документации.
- 4.1.25 Проверка направления движения органов управления системы (п.2.1.5) проводят многократным включением и отключением, при этом должна обеспечиваться четкая фиксация и индикация работы.
- 4.1.26 Проверка наличия ограждений токоведущих частей (п.2.1.6) проводят визуально, сличая наличие ограждений с указанными в конструкторской документации.
- 4.1.27 Проверка электрическое сопротивление изоляции (п.2.1.7) проводится при отключенной от сети системе в нормальных условиях эксплуатации, мегомметром на напряжение не менее 500 вольт между силовыми токоведущими частями различных фаз, между фазами и нулевым проводом, а также между фазами и корпусом. При испытаниях следует отключить все низковольтные электронные устройства от испытуемых цепей.
- 4.1.28 Проверка электрической прочности изоляции электрических цепей системы (п.2.1.8) следует проводить по ГОСТ Р 51321.1-2007. При испытаниях следует отключить все низковольтные электронные устройства от испытуемых цепей.

Изм.	Лист	№ докум.	Подп.	Дата

- **4.1.29** Проверка переходного сопротивления заземления системы (п.2.1.9) проводится между зажимом защитного заземляющего проводника и каждой токопроводящей металлической частью системы при помощи омметра на соответствующем пределе измерения.
- **4.1.30** Проверка воздушных зазоров И путей утечки между неизолированными токоведущими частями (п.2.1.10) следует проводить мерительными инструментами по ГОСТ Р 51321.1-2007.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

- 5.1 Система, упакованная в транспортную тару, транспортируется на крытых транспортных любые расстояния всеми видами средств (автомобильным, железнодорожным, речным и др.) в соответствии с действующими на данном виде транспорта правилами перевозок.
- транспортировании должна 5.2 быть обеспечена с упакованной транспортной тары системой ОТ непосредственного воздействия атмосферных осадков.
- Размещение и крепление транспортной тары, с упакованной в системой, должно обеспечивать транспортном средстве вертикальное положение системы и не допускать перемещения во время транспортирования.
- При погрузке и разгрузке системы должны строго выполняться требования манипуляционных знаков и надписей на упаковке.
- Условия хранения системы в части воздействия климатических факторов внешней среды - группа "С" по ГОСТ 15150-69. (закрытые или помещения естественной вентиляцией искусственно другие регулируемых климатических условий, где колебания температуры влажности воздуха существенно меньше, чем на открытом воздухе (например, каменные, бетонные, металлические с теплоизоляцией и другие хранилища), расположенные в макроклиматических районах с умеренным и холодным климатом при температуре от минус 20°C до плюс 40°C и относительной влажности воздуха не более 80% при 25°C).
- Срок хранения системы до ввода в эксплуатацию не более 24 5.6 месяцев в пределах общего срока службы.
- В помещении, предназначенном для хранения системы, должны отсутствовать агрессивные среды.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ И МОНТАЖУ

К обслуживанию системы допускается персонал, прошедший 6.1 подготовку и имеющий разрешение в соответствии с "Правилами технической электроустановок потребителей" и "Правилами безопасности при эксплуатации электроустановок потребителей".

Изм.	Лист	№ локум.	Полп.	Лата

- 6.2 Все работы по монтажу, подключению и отсоединению должны проводиться только при отсутствии напряжения на системе.
- 6.3 Защита обслуживающего персонала от прикосновения к токоведущим частям обеспечивается в соответствии с ГОСТ Р 51321.1-2007.
- 6.4 Перед вводом в эксплуатацию система должна быть заземлена в соответствии требованиями ПУЭ. Характеристики заземления должны соответствовать ГОСТ 12.1.030-81.
- 6.5 Нормы качества электрической энергии питания системы должны соответствовать ГОСТ 32144-2013.
- 6.6 Нормальными климатическими условиями эксплуатации системы являются:
 - температура окружающего воздуха от плюс 1°C до плюс 40 °C;
 - относительная влажность (при 20 °C) 60% (без конденсации влаги);
 - атмосферное давление от 650 до 800 мм. рт. ст. (86-106,7 кПа).
- 6.7 Техническое обслуживание и ремонт системы должен осуществляться квалифицированным персоналом, с периодичностью указанной в техническом регламенте на систему.
- 6.8 Шкаф управления при монтаже должен навешиваться от пола с учетом расположения органов управления на высоте от 1000 до 1400 мм от низа шкафа.
- 6.9 Заземление корпуса выполнить, используя заземляющие устройства согласно требованиям ПУЭ.
- 6.10 Техническое обслуживание проводить только при выключенном напряжении.
- 6.11 Периодическое обслуживание производится в соответствии с инструкциями эксплуатирующих организаций, но не реже одного раза в год, при этом необходимо проверить:
 - состояние контактных зажимов и крепежа;
 - убедиться в исправности всех элементов;
 - состояние заземления;
 - заменить сильно изношенные детали новыми;
 - целостность корпуса.
- 6.12 После окончания монтажа системы должны быть измерены параметры цепи заземления, проведено контроль изоляции и проведены необходимые измерения цепи «фаза-ноль».

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 7.1 Предприятие-изготовитель гарантирует соответствие системы требованиям настоящих технических условий при соблюдении потребителем условий монтажа, правил эксплуатации, транспортирования и хранения.
- 7.2 Гарантийный срок на систему 12 месяцев со дня отгрузки потребителю.

Изм	и. Лист	№ докум.	Подп.	Лата

7.4 В гарантийное обслуживание входит ремонт и/или замена неисправного оборудования потребителя.

- 7.5 Неисправное оборудование (детали, узлы) в течение гарантийного периода бесплатно ремонтируется или заменяется новым. Решение вопроса о целесообразности их замены или ремонта остается за специалистами предприятия-изготовителя.
- 7.6 Стационарно подключенное крупногабаритное оборудование (детали, узлы) ремонтируются по месту установки с выездом представителя производителя. Малое оборудование (детали, узлы) весом менее 5 кг, на которые распространяются гарантийные обязательства, заменяются и/или ремонтируются в сервисной мастерской производителя.
- 7.7 Замена неисправного устройства (узла) системы управления осуществляется на месте персоналом потребителя или компании-партнера по инструкциям, предоставленным заводом-изготовителем. При замене неисправного оборудования производитель предоставляет потребителю необходимое оборудование и необходимые инструкции по демонтажу, установке и подключению.
- 7.8 Заменяемые детали должны быть переданы производителю в течении одного месяца. В случае невыполнения потребителем данного требования, производитель вправе требовать возмещения стоимости замененного оборудования.
- 7.9 Гарантийные обязательства не распространяются на оборудование, получившее повреждения в результате:
 - неправильного электрического, гидравлического, механического подключения;
 - повреждений, характерных нарушения наличия ДЛЯ правил транспортировки, установки и эксплуатации оборудования (неправильная нестабильного установка, подача повышенного питающего "горячее" пренебрежение напряжения, подключение, правилами электростатической безопасности и т.п.);
 - использования оборудования не по назначению или не в соответствии с инструкцией по эксплуатации;
 - запуска насосного оборудования без воды (или иной перекачиваемой жидкости);
 - наличия следов попадания внутрь изделия посторонних веществ, жидкостей, предметов, насекомых и грызунов;
 - внешних механических воздействий, либо нарушения правил транспортировки и хранения;
 - несоответствия параметров питающих, телекоммуникационных, кабельных сетей Государственным стандартам РФ и данным ТУ;

Инв. № подл. подп. и дата Взам. инв. № Инв. № дубл.

Подп. и дата

Изм. Лист № докум. Подп. Дата

ТУ 26.51.70-023-45876126-2016

- при подаче напряжения на изделие без соблюдения необходимых мероприятий по измерениям и испытаний, указанным в инструкциях на систему;
- действий третьих лиц, либо непреодолимой силы;
- наличие повреждений, вызванных климатическими особенностями, стихийными бедствиями, пожарами и аналогичными причинами;
- дефектов систем, совместно с которыми эксплуатировалось оборудование;
- разборки или ремонта, произведенных лицом, не являющимся представителем Сервисного центра;
- изменения конструкции изделия, не согласованного с изготовителем;
- использования в сопряжении с приобретенным оборудованием нестандартного, не сертифицированного или не прошедшего тестирование на совместимость оборудования;
- несоблюдения сроков и периодов технического и профилактического обслуживания.

Инв. № дубл.							
Взам. инв. №							
Подп. и дата							
Инв. № подл.	Изм	Лист	№ докум.	Подп.	Дата	TV 26 51 70-023-45876126-2016	Iист 22

приложение а

ПЕРЕЧЕНЬ

нормативно-технической документации, указанной в технических условиях:

Обозначение	Наименование		
11	2		
ГОСТ 12.1.004-91	Системы стандартов безопасности труда. Пожарная безопасность. ОТБ		
ГОСТ 12.2.007.0-75	Системы стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности		
ГОСТ 12.4.026-2001	Системы стандартов безопасности труда. Цвета сигнальные и знаки безопасности		
ГОСТ 427-75	Линейки измерительные металлические. Технические условия		
ГОСТ 7502-98	Рулетки измерительные металлические. Технические условия		
ГОСТ 10354-82	Пленка полиэтиленовая. Технические условия		
ГОСТ 10434-82	Соединения контактные электрические. Классификация. Общие технические требования		
ГОСТ 12.1.030-81	Системы стандартов безопасности труда. Электробезопасность. Защитное заземление. Зануление.		
ГОСТ 32144-2013	Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения		
ГОСТ 14192-96	Маркировка грузов		
ГОСТ 15150-69	Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических		
ГОСТ 21130-75	Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры		
ГОСТ 21991-89 (МЭК 447-74)	Оборудование электротехническое. Аппараты электрические. Направление движения органов управления		
ГОСТ 22261-94	Средства измерений электрических и магнитных величин. Общие технические условия		

ТУ 26.51.70-023-45876126-2016

Лист

23

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Лист

№ докум.

Подп.

Дата

ГОСТ 22521-85	Датчики давления, разрежения и разности давлений с
	пневматическим аналоговым выходным сигналом ГСП.
	Общие технические условия
ГОСТ 23706-93	Приборы аналоговые показывающие
	электроизмерительные прямого действия и
	вспомогательные части к ним. Часть 6. Особые
	требования
ГОСТ 24634-81	Ящики деревянные для продукции, поставляемой
	для экспорта. Общие технические условия
ГОСТ Р 51321.1-2007	Устройства комплектные низковольтные распределения
	и управления. Часть 1. Устройства, испытанные
	полностью или частично. Общие технические
	требования и методы испытаний
ГОСТ 9.032-74	ПОКРЫТИЯ ЛАКОКРАСОЧНЫЕ
	Группы, технические требования и обозначения
TP TC 004/2011	Технический Регламент Таможенного Союза ТР ТС
	004/2011 №О безопасности низковольтного
	оборудования»
TP TC 020/2011	Технический Регламента Таможенного Союза ТР ТС
	020/2011 «Электромагнитная совместимость
	технических средств»
	Tomm Tomms of other

нв. № подл.	Подп. и дата	Взам. инв. №	Инв. № дубл.	подп. и л Подп. и

Изм.	Лист	№ докум.	Подп.	Дата

Наименование оборудования	Документ	Погрешность, класс, разряд
Гигрометр психрометрический ВИТ-2	TY 25 11.1645-84	20-90 % 18-40 °C
Датчик давления	ГОСТ 22521-85	класс точности 0,5 % от кон. знач.
Измеритель сопротивления изоляции	ГОСТ 23706	0,1 МОм-10 ТОм погрешность от 3% до 10% в зав. и от предела, U 10/50//500/1000 В
Измеритель сопротивления заземления	ГОСТ 23706-93	кт. 1,5
Токовые клещи	EN 10204 3.1	+- 0,5 %
Задатчик сигналов 0(4)20мA 010B	EN 10204 3.1	+- 0,5 %
Линейка измерительная	ГОСТ 7502	цена дел. 0,5 мм.
Мультиметр	КМСИ.411252. 024 ТУ	- U до 1000 B ~ U до 1000 B R до 1000 МОм
Рулетка металлическая 3 м.	ГОСТ 427-75	цена дел. 1мм.
Штангенциркуль	ШЦ-3-0.1	до 200 мм.
Толщиномер МТ-201	ТУ2876-1874-78	5-2100 мкм ПГ 3%

^{* -} Допускается применение других средств измерений, аналогичных по своим характеристикам и обеспечивающих заданные режимы измерения.

	·			
Изм.	Лист	№ докум.	Подп.	Дата

Подп. и дата

Взам. инв. №

Подп. и дата

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ

Изменен-

Заменен-

Всего

листов

Входящий

номер

	Изм.	ных	ны	X	Новых	Оннулир.	(страниц) в докум.	сопроводит. документа	Подп.	Дата	
╁╞											
_											
										<u> </u>	
						ТУ 26.5	51.70-023-4	5876126-201	5	Л	
Изм.	Лист	№ докум.	Подп.	Дата	1	2					